

 [image: arboreto]
[image: Build Status]
 [https://travis-ci.org/tmoerman/arboreto][image: Documentation Status]
 [http://arboreto.readthedocs.io/en/latest/?badge=latest][image: Bioconda package]
 [https://anaconda.org/bioconda/arboreto][image: PyPI package]
 [https://pypi.python.org/pypi?:action=display&name=arboreto&version=0.1.5]

Inferring a gene regulatory network (GRN) from gene expression data is a computationally expensive task, exacerbated by increasing data sizes due to advances
in high-throughput gene profiling technology.

Quick Start

	Installation

	User guide

	Report an issue [https://github.com/tmoerman/arboreto/issues/new]

	Source code at Github [https://github.com/tmoerman/arboreto]

	Releases at Bioconda [https://anaconda.org/bioconda/arboreto] and PyPI [https://pypi.python.org/pypi/arboreto/]

The Arboreto software library addresses this issue by providing a computational strategy that allows executing the class of GRN inference algorithms
exemplified by GENIE3 [http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html] 1 on hardware ranging from a single computer to a multi-node compute cluster. This class of GRN inference algorithms is defined by
a series of steps, one for each target gene in the dataset, where the most important candidates from a set of regulators are determined from a regression
model to predict a target gene’s expression profile.

Members of the above class of GRN inference algorithms are attractive from a computational point of view because they are parallelizable by nature. In arboreto,
we specify the parallelizable computation as a Dask [https://dask.pydata.org/en/latest/] graph 2, a data structure that represents the task schedule of a computation. A Dask scheduler assigns the
tasks in a Dask graph to the available computational resources. Arboreto uses the Dask distributed [https://distributed.readthedocs.io/en/latest/] scheduler to
spread out the computational tasks over multiple processes running on one or multiple machines.

Arboreto currently supports 2 GRN inference algorithms:

	GRNBoost2: fast GRN inference algorithm using stochastic Gradient Boosting Machine [https://en.wikipedia.org/wiki/Gradient_boosting#Stochastic_gradient_boosting] 3 regression with early-stopping [https://en.wikipedia.org/wiki/Early_stopping] regularization, the Arboreto flagship algorithm.

	GENIE3: the popular classic GRN inference algorithm using Random Forest [https://en.wikipedia.org/wiki/Random_forest] (RF) or ExtraTrees [https://en.wikipedia.org/wiki/Random_forest#ExtraTrees] (ET) regression.

Usage Example

import python modules
import pandas as pd
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

if __name__ == '__main__':
 # load the data
 ex_matrix = pd.read_csv(<ex_path>, sep='\t')
 tf_names = load_tf_names(<tf_path>)

 # infer the gene regulatory network
 network = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names)

 network.head()

	TF

	target

	importance

	G109

	G1406

	151.648784

	G16

	G1440

	136.741815

	G188

	G938

	124.707570

	G10

	G1312

	124.195566

	G48

	G1419

	121.488200

Check out more examples.

License

BSD 3-Clause License [https://github.com/tmoerman/arboreto/blob/master/LICENSE.txt]

pySCENIC

Arboreto is a component in pySCENIC [https://github.com/aertslab/pySCENIC]: a lightning-fast python implementation of
the SCENIC [https://aertslab.org/#scenic] pipeline 5 (Single-Cell rEgulatory Network Inference and Clustering)
which enables biologists to infer transcription factors, gene regulatory networks
and cell types from single-cell RNA-seq data.

References

	1

	Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE

	2

	Rocklin, M. (2015). Dask: parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in Science Conference (pp. 130-136).

	3

	Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378.

	4

	Marbach, D., Costello, J. C., Kuffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., … & Dream5 Consortium. (2012). Wisdom of crowds for robust gene network inference. Nature methods, 9(8), 796-804.

	5

	Aibar S, Bravo Gonzalez-Blas C, Moerman T, Wouters J, Huynh-Thu VA, Imrichova H, Kalender Atak Z, Hulselmans G, Dewaele M, Rambow F, Geurts P, Aerts J, Marine C, van den Oord J, Aerts S. SCENIC: Single-cell regulatory network inference and clustering. Nature Methods 14, 1083–1086 (2017). doi: 10.1038/nmeth.4463

 [image: Bioconda package]
 [https://anaconda.org/bioconda/arboreto][image: PyPI package]
 [https://pypi.python.org/pypi?:action=display&name=arboreto&version=0.1.5]

Installation Guide

There are different options to install Arboreto.

Hint

It is highly recommended to prepare a Python environment with the Anaconda [https://www.anaconda.com/download/#macos]
or Miniconda [https://conda.io/miniconda.html] distribution and install Arboreto using the
conda [https://conda.io/docs/user-guide/getting-started.html] package manager.

This avoids complexities in ensuring that libraries like NumPy [http://www.numpy.org/] and SciPy [https://www.scipy.org/]
link against an optimized implementation of linear algebra routines.

Install using conda (recommended)

The arboreto is available [https://anaconda.org/bioconda/arboreto] from bioconda [https://bioconda.github.io/], a distribution of bioinformatics
software realized as a channel for the versatile conda [https://conda.io/docs/user-guide/getting-started.html] package manager.

$ conda install -c bioconda arboreto

Install into a new conda environment

You can easily install arboreto into a fresh conda environment [https://conda.io/docs/user-guide/tasks/manage-environments.html#].
See 1 for a better understanding of the how and what of Python environments.

Following code snippet creates a new conda environment called “arboreto-env”
and installs arboreto and all its dependencies into that environment.

create the conda environment named "arboreto-env"
$ conda create --name arboreto-env

activate the conda environment we just created
$ source activate arboreto-env

note: your terminal will indicate which environment is active on the left
(arboreto-env) $...

install arboreto into the "arboreto-env" environment (hit Y to proceed)
(arboreto-env) $ conda install -c bioconda arboreto

When you’re done, deactivate the “arboreto-env” environment as follows:

deactivate the current environment
(arboreto-env) $ source deactivate

as you will see: the environment indication has disappeared.
$...

	1

	Why you need Python environments and how to manage them with Conda – Gergely Szerovay [https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c]

Install using pip

The arboreto package is available from PyPI [https://pypi.python.org/pypi/arboreto/] (Python Package Index), a repository
of software for the Python programming language. Using pip [https://pip.pypa.io/en/stable/], installing the arboreto package is straightforward:

$ pip install arboreto

Install from source

Installing Arboreto from source is possible using following steps:

	clone the Github [https://github.com/tmoerman/arboreto] repository [https://github.com/tmoerman/arboreto] using the git [https://git-scm.com/] tool:

$ git clone https://github.com/tmoerman/arboreto.git
$ cd arboreto

	build Arboreto using the provided script:

$./pypi_build.sh

	install the freshly built Arboreto package using pip [https://pip.pypa.io/en/stable/]:

$ pip install dist/*

Check out the installation

$ pip show arboreto

Name: arboreto
Version: 0.1.5
Summary: Scalable gene regulatory network inference using tree-based ensemble regressors
Home-page: https://github.com/tmoerman/arboreto
Author: Thomas Moerman
Author-email: thomas.moerman@gmail.com
License: BSD 3-Clause License
Location: /vsc-hard-mounts/leuven-data/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages
Requires: scipy, scikit-learn, numpy, pandas, dask, distributed

User Guide

	Modules overview

	Dependencies Overview

	Input / Output

	Running with a custom Dask Client

	Running with a Dask distributed scheduler

Modules overview

Arboreto consists of multiple python modules:

arboreto.algo

	Intended for typical users.

	Access point for launching GRNBoost2 or GENIE3 on local or distributed hardware.

arboreto.core

	Intended for advanced users.

	Contains the low-level building blocks of the Arboreto framework.

arboreto.utils

	Contains small utility functions.

Dependencies Overview

Arboreto uses well-established libraries from the Python ecosystem. Arboreto
avoids being a proverbial “batteries-included” library, as such an approach often
entails unnecessary complexity and maintenance. Arboreto aims at doing only one
thing, and doing it well.

Concretely, the user will be exposed to one or more of following dependencies:

	Pandas [https://pandas.pydata.org/] or NumPy [http://www.numpy.org/]: the user is expected to provide the input data in an expected format. Pandas [https://pandas.pydata.org/] and NumPy [http://www.numpy.org/] are well equipped with functions for data preprocessing.

	Dask.distributed [http://distributed.readthedocs.io]: to run Arboreto on a cluster, the user is responsible for setting up a network of a scheduler and workers.

	scikit-learn [http://scikit-learn.org/]: relevant for advanced users only. Arboreto can run “DIY” inference where the user provides their own parameters for the Random Forest or Gradient Boosting regressors.

Input / Output

INPUT

	
	an expression matrix (rows = observations, columns = genes)

	
	either a Pandas [https://pandas.pydata.org/] DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe] or a NumPy [http://www.numpy.org/] ndarray [https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.html]

	
	a list of gene names corresponding to the columns of the expression matrix

	
	optional

	
	a list of transcription factors (a.k.a. TFs)

	
	optional

OUTPUT

	
	regulatory links

	
	a Pandas [https://pandas.pydata.org/] DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe] ['TF', 'target', 'importance']

Tip

As data for following code snippets, you can use the data for network 1 from
the DREAM5 challenge (included in the resources [https://github.com/tmoerman/arboreto/tree/master/resources/] folder of the Github repository):

	<ex_path> = net1_expression_data.tsv [https://github.com/tmoerman/arboreto/tree/master/resources/dream5/net1/net1_expression_data.tsv]

	<tf_path> = net1_transcription_factors.tsv [https://github.com/tmoerman/arboreto/tree/master/resources/dream5/net1/net1_transcription_factors.tsv]

Expression matrix as a Pandas DataFrame

The input can be specified in a number of ways. Arguably the most straightforward
way is to specify the expression matrix as a Pandas [https://pandas.pydata.org/] DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe], which also contains
the gene names as the column header.

[image: User Guide Figure 1]

In the following code snippet, we launch network inference with grnboost2 by
specifying the expression_data as a DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe].

Expression matrix as a Pandas DataFrame

import pandas as pd
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

if __name__ == '__main__':
 # ex_matrix is a DataFrame with gene names as column names
 ex_matrix = pd.read_csv(<ex_path>, sep='\t')

 # tf_names is read using a utility function included in Arboreto
 tf_names = load_tf_names(<tf_path>)

 network = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names)

 network.to_csv('output.tsv', sep='\t', index=False, header=False)

Note

Notice the emphasized line:

if __name__ == '__main__':
 # ... code ...

This is a Python idiom necessary in situations where the code spawns new
Python processes, which Dask does under the hood of the grnboost2 and
genie3 functions to parallelize the workload.

Expression matrix as a NumPy ndarray

Arboreto also supports specifying the expression matrix as a Numpy [http://www.numpy.org/] ndarray [https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.html]
(in our case: a 2-dimensional matrix). In this case, the gene names must be
specified explicitly.

[image: User Guide Figure 2]

Caution

You must specify the gene names in the same order as their corresponding
columns of the NumPy [http://www.numpy.org/] matrix. Getting this right is the user’s responsibility.

Expression matrix as a NumPy ndarray

import numpy as np
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

if __name__ == '__main__':
 # ex_matrix is a numpy ndarray, which has no notion of column names
 ex_matrix = np.genfromtxt(<ex_path>, delimiter='\t', skip_header=1)

 # we read the gene names from the first line of the file
 with open(<ex_path>) as file:
 gene_names = [gene.strip() for gene in file.readline().split('\t')]

 # sanity check to verify the ndarray's nr of columns equals the length of the gene_names list
 assert ex_matrix.shape[1] == len(gene_names)

 # tf_names is read using a utility function included in Arboreto
 tf_names = load_tf_names(<tf_path>)

 network = grnboost2(expression_data=ex_matrix,
 gene_names=gene_names, # specify the gene_names
 tf_names=tf_names)

 network.to_csv('output.tsv', sep='\t', index=False, header=False)

Running with a custom Dask Client

Arboreto uses Dask.distributed [http://distributed.readthedocs.io] to parallelize its workloads. When the user
doesn’t specify a dask distributed Client [http://distributed.readthedocs.io/en/latest/client.html] explicitly, Arboreto will create a
LocalCluster [http://distributed.readthedocs.io/en/latest/local-cluster.html?highlight=localcluster#distributed.deploy.local.LocalCluster] and a Client [http://distributed.readthedocs.io/en/latest/client.html] pointing to it.

Alternatively, you can create and configure your own Client [http://distributed.readthedocs.io/en/latest/client.html] instance and pass
it on to Arboreto. Situations where this is useful include:

	inferring multiple networks from different datasets

	inferring multiple networks using different parameters from the same dataset

	the user requires custom configuration for the LocalCluster (memory limit, nr of processes, etc.)

Following snippet illustrates running the gene regulatory network inference
multiple times, with different initialization seed values. We create one Client [http://distributed.readthedocs.io/en/latest/client.html]
and pass it to the different inference steps.

Running with a custom Dask Client

import pandas as pd
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2
from distributed import LocalCluster, Client

if __name__ == '__main__':
 # create custom LocalCluster and Client instances
 local_cluster = LocalCluster(n_workers=10,
 threads_per_worker=1,
 memory_limit=8e9)
 custom_client = Client(local_cluster)

 # load the data
 ex_matrix = pd.read_csv(<ex_path>, sep='\t')
 tf_names = load_tf_names(<tf_path>)

 # run GRN inference multiple times
 network_666 = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 client_or_address=custom_client, # specify the custom client
 seed=666)

 network_777 = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 client_or_address=custom_client, # specify the custom client
 seed=777)

 # close the Client and LocalCluster after use
 client.close()
 local_cluster.close()

 network_666.to_csv('output_666.tsv', sep='\t', index=False, header=False)
 network_777.to_csv('output_777.tsv', sep='\t', index=False, header=False)

Running with a Dask distributed scheduler

Arboreto was designed to run gene regulatory network inference in a distributed
setting. In distributed mode, some effort by the user or a systems administrator
is required to set up [http://distributed.readthedocs.io/en/latest/setup.html] a dask.distributed scheduler and some workers.

Tip

Please refer to the Dask distributed network setup documentation [http://distributed.readthedocs.io/en/latest/setup.html] for
instructions on how to set up a Dask distributed cluster.

Following diagram illustrates a possible topology of a Dask distributed cluster.

[image: User Guide Figure 3]

	node_1 runs a Python script, console or a Jupyter [http://jupyter.org/] notebook server, a Client [http://distributed.readthedocs.io/en/latest/client.html] instance is configured with the TCP address of the distributed scheduler, running on node_2

	node_2 runs a distributed scheduler and 10 workers pointing to the scheduler

	node_3 runs 10 distributed workers pointing to the scheduler

	node_4 runs 10 distributed workers pointing to the scheduler

With a small modification to the code, we can infer a regulatory network using all
workers connected to the distributed scheduler [http://distributed.readthedocs.io/en/latest/setup.html]. We specify a Client [http://distributed.readthedocs.io/en/latest/client.html] that is
connected to the Dask distributed scheduler [http://distributed.readthedocs.io/en/latest/setup.html] and pass it as an argument to the
inference function.

Running with a Dask distributed scheduler

import pandas as pd
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2
from distributed import Client

if __name__ == '__main__':
 ex_matrix = pd.read_csv(<ex_path>, sep='\t')
 tf_names = load_tf_names(<tf_path>)

 scheduler_address = 'tcp://10.118.224.134:8786' # example address of the remote scheduler
 cluster_client = Client(scheduler_address) # create a custom Client

 network = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 client_or_address=cluster_client) # specify Client connected to the remote scheduler

 network.to_csv('output.tsv', sep='\t', index=False, header=False)

Examples

Python script

	Example python script [https://github.com/tmoerman/arboreto/blob/master/resources/dream5/net1/run_grnboost2.py] running GRNBoost2 on files located in the same folder.

<arboreto repo>/resources/dream5/net1/run_grnboost2.py

import pandas as pd

from distributed import Client, LocalCluster
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

if __name__ == '__main__':

 in_file = 'net1_expression_data.tsv'
 tf_file = 'net1_transcription_factors.tsv'
 out_file = 'net1_grn_output.tsv'

 # ex_matrix is a DataFrame with gene names as column names
 ex_matrix = pd.read_csv(in_file, sep='\t')

 # tf_names is read using a utility function included in Arboreto
 tf_names = load_tf_names(tf_file)

 # instantiate a custom Dask distributed Client
 client = Client(LocalCluster())

 # compute the GRN
 network = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 client_or_address=client)

 # write the GRN to file
 network.to_csv(out_file, sep='\t', index=False, header=False)

Run as a classic python script:

cd <arboreto repo>/resources/dream5/net1
python run_grnboost2

Jupyter notebooks

Following are links to example Jupyter notebooks that illustrate different
Arboreto usage scenarios (links render notebooks in Jupyter nbviewer [https://nbviewer.jupyter.org/]).

	Example 01 - GRNBoost2 local [https://nbviewer.jupyter.org/github/tmoerman/arboreto/blob/master/notebooks/examples/ex_01_grnboost2_local.ipynb]

A basic usage scenario where we infer the gene regulatory network from a single dataset on the local machine.

	Example 02 - GRNBoost2 with custom Dask Client [https://nbviewer.jupyter.org/github/tmoerman/arboreto/blob/master/notebooks/examples/ex_02_grnboost2_custom_client.ipynb]

A slightly more advanced scenario where we infer the gene regulatory network from a single dataset, using a custom Dask client.

	Example 03 - GRNBoost2 with transposed input file [https://nbviewer.jupyter.org/github/tmoerman/arboreto/blob/master/notebooks/examples/ex_03_grnboost2_transposed_input_file.ipynb]

Illustrates how to easily prepare the input data using a Pandas [https://pandas.pydata.org/] DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe], in case the input file happens to be transposed with respect to the Arboreto input conventions.

GRN Inference Algorithms

Arboreto hosts multiple (currently 2, contributions welcome!) algorithms for
inference of gene regulatory networks from high-throughput gene expression data,
for example single-cell RNA-seq data.

GRNBoost2

GRNBoost2 is the flagship algorithm for gene regulatory network inference, hosted
in the Arboreto framework. It was conceived as a fast alternative for GENIE3 [http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html],
in order to alleviate the processing time required for larger datasets (tens of
thousands of observations).

GRNBoost2 adopts the GRN inference strategy exemplified by GENIE3 [http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html], where for
each gene in the dataset, the most important feature are a selected from a trained
regression model and emitted as candidate regulators for the target gene. All
putative regulatory links are compiled into one dataset, representing the inferred
regulatory network.

In GENIE3 [http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html], Random Forest [https://en.wikipedia.org/wiki/Random_forest] regression models are trained.

GENIE3

We consider GENIE3 [http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html] as the blueprint of “multiple regression GRN inference”
strategy.

DREAM5 benchmark

Concept and Background

Arboreto was conceived to address the need for a faster alternative for the
classic GENIE3 implementation for inferring gene regulatory networks from high-throughput
gene expression profiles.

In summary, GENIE3 performs a number of independent learning tasks. This inference
“architecture” suggests two approaches for speeding up the algorithm:

	Speeding up the individual learning tasks.

	Specifying the task coordination logic so that the tasks can be executed in parallel on distributed hardware.

FAQ

	Q: How can I use the Dask diagnostics (bokeh) dashboard?

	Q: My gene expression matrix is transposed, what now?

	Example: reading a transposed text file with Pandas

	Q: Different runs produce different network outputs, why?

Q: How can I use the Dask diagnostics (bokeh) dashboard?

Dask distributed features a nice web interface [http://distributed.readthedocs.io/en/latest/web.html] for monitoring the execution
of a Dask computation graph.

[image: Dask diagnostics dashboard]
By default, when no custom Client is specified, Arboreto creates a LocalCluster [http://distributed.readthedocs.io/en/latest/local-cluster.html?highlight=localcluster#distributed.deploy.local.LocalCluster]
instance with the diagnostics dashboard disabled:

...
local_cluster = LocalCluster(diagnostics_port=None)
client = Client(local_cluster)
...

You can easily create a custom LocalCluster [http://distributed.readthedocs.io/en/latest/local-cluster.html?highlight=localcluster#distributed.deploy.local.LocalCluster], with the dashboard enabled, and
pass a custom Client [http://distributed.readthedocs.io/en/latest/client.html] connected to that cluster to the GRN inference algorithm:

local_cluster = LocalCluster() # diagnostics dashboard is enabled
custom_client = Client(local_cluster)

...

network = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 client=custom_client) # specify the custom client

By default, the dashboard is available on port 8787.

For more information, consult:

	Dask web interface [http://distributed.readthedocs.io/en/latest/web.html] documentation

	Running with a custom Dask Client

Q: My gene expression matrix is transposed, what now?

The Python scikit-learn [http://scikit-learn.org] library expects data in a format where rows represent
observations and columns represent features (in our case: genes), for example, see the
GradientBoostingRegressor API [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.fit].

However, in some fields (like single-cell genomics), the default is inversed: the rows represent
genes and the columns represent the observations.

In order to maintain an API that is as lean is possible, Arboreto adopts
the scikit-learn convention (rows=observations, columns=features). This means that
the user is responsible for providing the data in the right shape.

Fortunately, the Pandas [https://pandas.pydata.org/] and Numpy [http://www.numpy.org/] libraries feature all the necessary functions
to preprocess your data.

Example: reading a transposed text file with Pandas

df = pd.read_csv(<ex_path>, index_col=0, sep='\t').T

Caution

Don’t carelessly copy/paste above snippet. Take into account absence or presence
of 1 or multiple header lines in the file.

Always check whether the your DataFrame has the expected dimensions!

In[10]: df.shape

Out[10]: (17650, 14086) # example

Q: Different runs produce different network outputs, why?

Both GENIE3 and GRNBoost2 are based on stochastic machine learning techniques,
which use a random number generator internally to perform random sub-sampling of
observations and features when building decision trees.

To stabilize the output, Arboreto accepts a seed [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html] value that is used to initialize
the random number generator used by the machine learning algorithms.

network_df = grnboost2(expression_data=ex_matrix,
 tf_names=tf_names,
 seed=777)

Troubleshooting

	Bokeh error when launching Dask scheduler

	Workers do not connect with Dask scheduler

Bokeh error when launching Dask scheduler

vsc12345@r6i0n5 ~ 12:00 $ dask-scheduler

distributed.scheduler - INFO - ---
distributed.scheduler - INFO - Could not launch service: ('bokeh', 8787)
Traceback (most recent call last):
File "/data/leuven/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages/distributed/scheduler.py", line 430, in start_services
 service.listen((listen_ip, port))
 File "/data/leuven/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages/distributed/bokeh/core.py", line 31, in listen
 **kwargs)
File "/data/leuven/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages/bokeh/server/server.py", line 371, in __init__
 tornado_app = BokehTornado(applications, extra_websocket_origins=extra_websocket_origins, prefix=self.prefix, **kwargs)
TypeError: __init__() got an unexpected keyword argument 'host'
distributed.scheduler - INFO - Scheduler at: tcp://10.118.224.134:8786
distributed.scheduler - INFO - http at: :9786
distributed.scheduler - INFO - Local Directory: /tmp/scheduler-y6b8mnih
distributed.scheduler - INFO - ---
distributed.scheduler - INFO - Receive client connection: Client-7b476bf6-c6d8-11e7-b839-a0040220fe80
distributed.scheduler - INFO - End scheduler at 'tcp://:8786'

	known error: see Github issue [https://github.com/dask/distributed/issues/1515] (closed), fixed in Dask.distributed version 0.20.0

	workaround: launch with bokeh disabled: dask-scheduler --no-bokeh

	solution: upgrade to Dask distributed 0.20.0 or higher

Workers do not connect with Dask scheduler

We have observed that sometimes when running the dask-worker command, the
workers start but no connections are made to the scheduler.

Solutions:

	delete the dask-worker-space directory before starting the workers.

	specifying the local_dir (with enough space) when instantiating a Dask

distributed Client:

>>> from dask.distributed import Client, LocalCluster
>>> worker_kwargs = {'local_dir': '/tmp'}
>>> cluster = LocalCluster(**worker_kwargs)
>>> client = Client(cluster)
>>> client

<Client: scheduler='tcp://127.0.0.1:41803' processes=28 cores=28>

	Github issue: https://github.com/dask/distributed/issues/1707

LCB Notes

This page contains additional documentation relevant for the Stein Aerts Lab of
Computation Biology (LCB [https://gbiomed.kuleuven.be/english/research/50000622/lcb]).

	VSC access

	Front nodes

	Running Arboreto on the front nodes

	0. Software preparation

	1. Starting the Dask scheduler

	2. Adding workers to the scheduler

	3. Running Arboreto from a Jupyter notebook

VSC access

First you will need access to the VSC [https://www.vscentrum.be/] front nodes. For this, a VSC [https://www.vscentrum.be/] account is
required plus additional ssh [https://en.wikipedia.org/wiki/Secure_Shell] configuration.

Tip

Kindly ask Gert [https://gbiomed.kuleuven.be/english/research/50000622/lcb/people/00079808] for assistance setting up your ssh [https://en.wikipedia.org/wiki/Secure_Shell] configuration for the VSC using the
https://git.aertslab.org/connect_to_servers/ script.

Front nodes

We will work with following machines:

	Alias

	HostName

	CPU

	Memory

	hpc2-big1

	r10n1

	10 core (20 threads)

	256 GB

	hpc2-big2

	r10n2

	10 core (20 threads)

	256 GB

	hpc2-big3

	r6i0n5

	2x 12-core (48 threads)

	512 GB

	hpc2-big4

	r6i0n12

	2x 12-core (48 threads)

	512 GB

	hpc2-big5

	r6i0n13

	2x 12-core (48 threads)

	512 GB

	hpc2-big6

	r6i1n12

	2x 12-core (48 threads)

	512 GB

	hpc2-big7

	r6i1n13

	2x 12-core (48 threads)

	512 GB

The aliases are the ones defined by the https://git.aertslab.org/connect_to_servers/ script.

Running Arboreto on the front nodes

Following section describes the steps requires for inferring a GRN using Arboreto
in distributed mode, using the front nodes.

Tip

Setting up a Dask.distributed cluster requires ssh access to multiple nodes.
We recommend using a terminal multiplexer [https://en.wikipedia.org/wiki/Terminal_multiplexer] tool like tmux [https://github.com/tmux/tmux/wiki] for managing
multiple ssh sessions.

On the VSC [https://www.vscentrum.be/], tmux [https://github.com/tmux/tmux/wiki] is available by loading following module:

$ module load tmux/2.5-foss-2014a

We will set up a cluster using about half the CPU resources of the 5 larger nodes
(hpc2-big3 to hpc2-big7). One of the large nodes will also host the
Dask scheduler. One a smaller node, we run a Jupyter [http://jupyter.org/] notebook server from which we
run the GRN inference using Arboreto.

[image: LCB front nodes distributed architecture]
LCB front nodes distributed architecture

0. Software preparation

As recommended in the Installation Guide, we will use an Anaconda distribution.
On the front nodes we do this by loading a module:

vsc12345@r6i0n5

$ module load Anaconda/5-Python-3.6

We obviously need Arboreto (make sure you have the latest version):

vsc12345@r6i0n5

$ pip install arboreto

$ pip show arboreto

Name: arboreto
Version: 0.1.5
Summary: Scalable gene regulatory network inference using tree-based ensemble regressors
Home-page: https://github.com/tmoerman/arboreto
Author: Thomas Moerman
Author-email: thomas.moerman@gmail.com
License: BSD 3-Clause License
Location: /vsc-hard-mounts/leuven-data/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages
Requires: scikit-learn, dask, numpy, scipy, distributed, pandas

We now proceed with launching the Dask scheduler and workers. Make sure that on
the nodes, the Anaconda module was loaded like explained above.

1. Starting the Dask scheduler

On node r6i0n5, we launch the Dask scheduler.

vsc12345@r6i0n5

$ dask-scheduler

distributed.scheduler - INFO - --- │distributed.worker - INFO - Registered to: tcp://10.118.224.134:8786
distributed.scheduler - INFO - Scheduler at: tcp://10.118.224.134:8786 │distributed.worker - INFO - ---
distributed.scheduler - INFO - bokeh at: :35874 │distributed.worker - INFO - Registered to: tcp://10.118.224.134:8786
distributed.scheduler - INFO - Local Directory: /tmp/scheduler-wu5odlrh │distributed.worker - INFO - ---
distributed.scheduler - INFO - ---

The command launches 2 services:

	The Dask scheduler on address: tcp://10.118.224.134:8786

	The Dask diagnostics dashboard [http://distributed.readthedocs.io/en/latest/web.html] on address: tcp://10.118.224.134:35874

Tip

The Dask diagnostics dashboard [http://distributed.readthedocs.io/en/latest/web.html] is useful for monitoring the progress of
long-running Dask jobs. In order to view the dashboard, which runs on the VSC
front node r6i0n5, use ssh port forwarding [https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding] as follows:

ssh -L 8787:localhost:35874 hpc2-big3

You can now view the Dask dashboard on url: http://localhost:8787.

2. Adding workers to the scheduler

We will need the scheduler address: tcp://10.118.224.134:8786 (highlighted
above) when launching worker processes connected to the scheduler.

First, we launch 24 worker processes on the same machine where the scheduler is
running:

vsc12345@r6i0n5

$ nice -n 10 dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

The command above consists of several parts, let’s briefly discuss them:

	nice -n 10

Setting a nice [https://en.wikipedia.org/wiki/Nice_%28Unix%29] value of higher than 0 gives the process a lower priority,
which is sometimes desirable to not highjack the resources on compute nodes
used by multiple users.

Setting a nice [https://en.wikipedia.org/wiki/Nice_%28Unix%29] value is entirely optional and up to the person setting up
the distributed network. You can safely omit this.

	dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

Spins up 24 worker processes with 1 thread per process. For Arboreto, it is
recommended to always set --nthreads 1.

In this case we have chosen 24 processes because we planned to use only half
the CPU capacity of the front nodes.

In the terminal where the scheduler was launched, you should see messages indicating
workers have been connected to the scheduler:

distributed.scheduler - INFO - Register tcp://10.118.224.134:43342
distributed.scheduler - INFO - Starting worker compute stream, tcp://10.118.224.134:43342

We now repeat the same command on the other compute nodes that will run Dask worker processes:

vsc12345@r6i0n12

$ nice -n 10 dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

vsc12345@r6i0n13

$ nice -n 10 dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

vsc12345@r6i1n12

$ nice -n 10 dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

vsc12345@r6i1n13

$ nice -n 10 dask-worker tcp://10.118.224.134:8786 --nprocs 24 --nthreads 1

3. Running Arboreto from a Jupyter notebook

So far, we have a scheduler running with 5*24 worker processes connected to it and
a diagnostics dashboard. Let’s now run a Jupyter [http://jupyter.org/] notebook or Jupyter Lab [https://github.com/jupyterlab/jupyterlab]
server so that we can interact with the Dask cluster from within a Jupyter [http://jupyter.org/] environment.

vsc12345@r10n2

$ jupyter lab --port 9999 --no-browser

[I 12:16:08.725 LabApp] JupyterLab alpha preview extension loaded from /data/leuven/software/biomed/Anaconda/5-Python-3.6/lib/python3.6/site-packages/jupyterlab
JupyterLab v0.27.0
Known labextensions:
[I 12:16:08.739 LabApp] Running the core application with no additional extensions or settings
[I 12:16:08.766 LabApp] Serving notebooks from local directory: /ddn1/vol1/staging/leuven/stg_00002/lcb/tmoerman/nb
[I 12:16:08.766 LabApp] 0 active kernels
[I 12:16:08.766 LabApp] The Jupyter Notebook is running at:
[I 12:16:08.766 LabApp] http://localhost:9999/?token=2dca6ce946265895846795c4983191c9f76ba954f414efdf
[I 12:16:08.766 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 12:16:08.767 LabApp]

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://localhost:9999/?token=2dca6ce946265895846795c4983191c9f76ba954f414efdf

Again, use ssh port forwarding [https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding] to access the notebook server. Execute following
command in a shell on your local machine:

localhost

$ ssh -L 9999:localhost:9999 hpc2-big2

To access the notebook open a browser and navigate to following url:

http://localhost:9999/?token=2dca6ce946265895846795c4983191c9f76ba954f414efdf

Note

Using Jupyter is entirely optional. Everything explained in the following
section is equally applicable to running Arboreto from a simple Python session
or script.

As an example, please consider this script [https://github.com/tmoerman/arboreto/blob/master/scripts/run_arboreto.py]. Remember that the main code
should be in a code block protected by:

if __name__ == '__main__':
 # ... code ...

Now we are ready to create a new notebook in Jupyter and write some Python code
to check whether the cluster was set up correctly:

In [1]: from distributed import Client

In [2]: client = Client('tcp://10.118.224.134:8786')

In [3]: client

Out[3]:

 Client
 * Scheduler: tcp://10.118.224.134:8786
 * Dashboard: http://10.118.224.134:35874

 Cluster
 * Workers: 120
 * Cores: 120
 * Memory: 1354.63 GB

The cluster is set up and ready for Arboreto GRN inference work. Please review
the section Running with a Dask distributed scheduler on how to use Arboreto in distributed mode.

To run in distributed mode, we need to make one modification to the code launching
the inference algorithm: specifying client_or_address in the (in this case) genie3 function:

network_df = genie3(expression_data=ex_matrix,
 tf_names=tf_names,
 client_or_address=client)

While our computation is running, we can consult the Dask diagnostics dashboard [http://distributed.readthedocs.io/en/latest/web.html]
to monitor progress. Point a browser to localhost:8787/status, you should see
a dynamic visualization like this:

[image: _images/dashboard_front_nodes.png]
Dask diagnostics dashboard visualizing Arboreto progress

Note the progress gauges in the bottom:

infer_data –> 693 / 14086 means that 693 out of 14086 inference steps
have been completed so far. As the inference steps entail almost the entire
workload of the algorithm, this is a pretty accurate progress indicator.

Index

 _static/plus.png

_images/dashboard_front_nodes.png
Worker Core

[ﬁ‘ DASK Status Workers Tasks System Profile Counters Info

Bytes stored: 2273 GB Tasks Processing
0] ©
Ex ®
EX »
LR l 10
o] m ‘ I I I I I
8011y %0244 'ﬁﬁws “ory oy O ’w P S P A
Task Stream
] =
] .
%0 o 1 2 a0 40
Progress - total: 28174, in-memory: 694, processing: 26903, erred: 0
inteliata 693 /14086
Bl coeyea 577/ 14086
finalize 0/1

_images/arboreto.png
arboreto

_static/up-pressed.png

_static/up.png

_images/user_guide_figure1.png
GRNBoost2
or

(DataFrame)
transcription factors GENIE3
(list)

regulatory links

_images/daskboard.gif
Terminal

[Bokeh Applicat: x

[Bokeh Applicat: x
C | @ localhost:8787/workers

ax 0 O H <« C | ® localhost:8787/status ax| 0 O
Dask -- Documentation -- Scheduler Docs -- Tasks -- Workers fé DASK Dask -- Documentation -- Scheduler Docs -- Tasks -- Workers fé DASK
. i 100 %
Processing and Pending 80% 4 — Memory— CPU |
o] 60%
40%
| 20%
0%
0.8 S
é’ 8:3 Network Send Network Recv \,\,\'\,\'\'\N
<02 —
0 t t t T t t t
t + + + 1 28s 30s 32s 34s 36s 38s 40s
1 0.5 0 05 1 Time
Memory Usage (%) Memory Use: 0.00 MB
@]
b t t t t 1
0 02 04 06 0.8 1 Task Stream o]
host cores processes memory cpu memory %
0 127.0.0.1 4 1 16 GiB 39.1 % 29.2 %
1.127.0.0.2 4 1 16 GiB 37.8% 29.2 %
2 127.0.0.3 4 1 16 GiB 35.7 % 29.2 %
3 127.0.0.4 4 1 16 GiB 38.2 % 29.2 %
--helg
LMDB ft x Y C 02-custom-etl x
® localhost:8888/notebooks/02-custom-etLipynb ax 0 O
Jupyter o02-custom-et wssesearses]
le Edit View Insert Cell Kernel Widgets Help ‘ Python [conda root] O
‘ + < @A B 4 v N B C Makdown v CellToolbar & i O Progress -- total: 0, in-memory: 0, processing: 0, ready: 0, waiting: 0, failed: 0
In [9]: from dask.distributed import Client, progress a
client = Client('localhost:8786"')
future = client.compute(best)
Larger Example

_images/distributed.png
r6iOnl2

r1on2 r6ion5 r6ion13

upyte distributed .

notebook scheduler

; r6ilnl2
Dask workers Dask workers
r6ilnl3

_images/user_guide_figure2.png
GRNBoost2
------------ or

. GENIE3
transcription factors il
(list)

regulatory links

(DataFrame)

_images/user_guide_figure3.png
nodel node2 node3

Dask
distributed

scheduler

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Usage Example

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

